argparse/include/argparse.hpp
2019-05-09 18:44:46 +02:00

678 lines
24 KiB
C++

/*
__ _ _ __ __ _ _ __ __ _ _ __ ___ ___
/ _` | '__/ _` | '_ \ / _` | '__/ __|/ _ \ Argument Parser for Modern C++
| (_| | | | (_| | |_) | (_| | | \__ \ __/ http://github.com/p-ranav/argparse
\__,_|_| \__, | .__/ \__,_|_| |___/\___|
|___/|_|
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
SPDX-License-Identifier: MIT
Copyright (c) 2019 Pranav Srinivas Kumar <pranav.srinivas.kumar@gmail.com>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#pragma once
#include <iostream>
#include <string>
#include <map>
#include <vector>
#include <list>
#include <functional>
#include <any>
#include <memory>
#include <type_traits>
#include <algorithm>
#include <sstream>
namespace argparse {
// Some utility structs to check template specialization
template<typename Test, template<typename...> class Ref>
struct is_specialization : std::false_type {};
template<template<typename...> class Ref, typename... Args>
struct is_specialization<Ref<Args...>, Ref> : std::true_type {};
// Upsert into std::map
template <class KeyType, class ElementType>
bool upsert(std::map<KeyType, ElementType>& aMap, KeyType const& aKey, ElementType const& aNewValue) {
auto tResult = aMap.insert(typename std::map<KeyType, ElementType>::value_type(aKey, aNewValue));
if (!tResult.second) {
if (!(tResult.first->second == aNewValue)) {
tResult.first->second = aNewValue;
return true;
}
else
return false; // it was the same
}
else
return true; // changed cause not existing
}
// Check if string (haystack) starts with a substring (needle)
bool starts_with(const std::string& haystack, const std::string& needle) {
return needle.length() <= haystack.length()
&& std::equal(needle.begin(), needle.end(), haystack.begin());
};
// Get value at index from std::list
template <typename T>
T get_from_list(const std::list<T>& aList, size_t aIndex) {
if (aList.size() > aIndex) {
auto tIterator = aList.begin();
std::advance(tIterator, aIndex);
return *tIterator;
}
return T();
}
class Argument {
friend class ArgumentParser;
public:
Argument() = default;
template <typename ...Args>
explicit Argument(Args... args)
: mNames({std::move(args)...})
, mIsOptional((is_optional(args) || ...))
{}
Argument& help(const std::string& aHelp) {
mHelp = aHelp;
return *this;
}
Argument& default_value(std::any aDefaultValue) {
mDefaultValue = std::move(aDefaultValue);
return *this;
}
Argument& implicit_value(std::any aImplicitValue) {
mImplicitValue = std::move(aImplicitValue);
mNumArgs = 0;
return *this;
}
Argument& action(std::function<std::any(const std::string&)> aAction) {
mAction = std::move(aAction);
return *this;
}
Argument& nargs(size_t aNumArgs) {
mNumArgs = aNumArgs;
return *this;
}
template <typename T>
bool operator!=(const T& aRhs) const {
return !(*this == aRhs);
}
// Entry point for template types other than std::vector and std::list
template <typename T>
typename std::enable_if<is_specialization<T, std::vector>::value == false &&
is_specialization<T, std::list>::value == false, bool>::type
operator==(const T& aRhs) const {
return get<T>() == aRhs;
}
// Template specialization for std::vector<...>
template <typename T>
typename std::enable_if<is_specialization<T, std::vector>::value, bool>::type
operator==(const T& aRhs) const {
T tLhs = get_vector<T>();
if (tLhs.size() != aRhs.size())
return false;
else {
for (size_t i = 0; i < tLhs.size(); i++) {
auto tValueAtIndex = std::any_cast<typename T::value_type>(tLhs[i]);
if (tValueAtIndex != aRhs[i])
return false;
}
return true;
}
}
// Template specialization for std::list<...>
template <typename T>
typename std::enable_if<is_specialization<T, std::list>::value, bool>::type
operator==(const T& aRhs) const {
T tLhs = get_list<T>();
if (tLhs.size() != aRhs.size())
return false;
else {
for (size_t i = 0; i < tLhs.size(); i++) {
auto tValueAtIndex = std::any_cast<typename T::value_type>(get_from_list(tLhs, i));
if (tValueAtIndex != get_from_list(aRhs, i))
return false;
}
return true;
}
}
private:
// If an argument starts with "-" or "--", then it's optional
static bool is_optional(const std::string& aName) {
return (starts_with(aName, "--") || starts_with(aName, "-"));
}
// Getter for template types other than std::vector and std::list
template <typename T>
T get() const {
if (mValues.empty()) {
if (mDefaultValue.has_value()) {
return std::any_cast<T>(mDefaultValue);
}
else
return T();
}
else {
if (!mRawValues.empty())
return std::any_cast<T>(mValues[0]);
else {
if (mDefaultValue.has_value())
return std::any_cast<T>(mDefaultValue);
else
return T();
}
}
}
// Getter for std::vector. Here T = std::vector<...>
template <typename T>
T get_vector() const {
T tResult;
if (mValues.empty()) {
if (mDefaultValue.has_value()) {
T tDefaultValues = std::any_cast<T>(mDefaultValue);
for (size_t i = 0; i < tDefaultValues.size(); i++) {
tResult.push_back(std::any_cast<typename T::value_type>(tDefaultValues[i]));
}
return tResult;
}
else
return T();
}
else {
if (!mRawValues.empty()) {
for (const auto& mValue : mValues) {
tResult.push_back(std::any_cast<typename T::value_type>(mValue));
}
return tResult;
}
else {
if (mDefaultValue.has_value()) {
std::vector<T> tDefaultValues = std::any_cast<std::vector<T>>(mDefaultValue);
for (size_t i = 0; i < tDefaultValues.size(); i++) {
tResult.push_back(std::any_cast<typename T::value_type>(tDefaultValues[i]));
}
return tResult;
}
else
return T();
}
}
}
// Getter for std::list. Here T = std::list<...>
template <typename T>
T get_list() const {
T tResult;
if (mValues.empty()) {
if (mDefaultValue.has_value()) {
T tDefaultValues = std::any_cast<T>(mDefaultValue);
for (size_t i = 0; i < tDefaultValues.size(); i++) {
tResult.push_back(std::any_cast<typename T::value_type>(get_from_list(tDefaultValues, i)));
}
return tResult;
}
else
return T();
}
else {
if (!mRawValues.empty()) {
for (const auto& mValue : mValues) {
tResult.push_back(std::any_cast<typename T::value_type>(mValue));
}
return tResult;
}
else {
if (mDefaultValue.has_value()) {
std::list<T> tDefaultValues = std::any_cast<std::list<T>>(mDefaultValue);
for (size_t i = 0; i < tDefaultValues.size(); i++) {
tResult.push_back(std::any_cast<typename T::value_type>(get_from_list(tDefaultValues, i)));
}
return tResult;
}
else
return T();
}
}
}
std::vector<std::string> mNames;
std::string mUsedName;
std::string mHelp;
std::any mDefaultValue;
std::any mImplicitValue;
std::function<std::any(const std::string&)> mAction = [](const std::string& aValue) { return aValue; };
std::vector<std::any> mValues;
std::vector<std::string> mRawValues;
size_t mNumArgs = 1;
bool mIsOptional = false;
bool mIsUsed = false; // relevant for optional arguments. True if used by user
};
class ArgumentParser {
public:
explicit ArgumentParser(std::string aProgramName = "") :
mProgramName(std::move(aProgramName)),
mNextPositionalArgument(0) {
std::shared_ptr<Argument> tArgument = std::make_shared<Argument>();
tArgument->mNames = { "-h", "--help" };
tArgument->mHelp = "show this help message and exit";
tArgument->mNumArgs = 0;
tArgument->mDefaultValue = false;
tArgument->mImplicitValue = true;
mOptionalArguments.push_back(tArgument);
upsert(mArgumentMap, std::string("-h"), tArgument);
upsert(mArgumentMap, std::string("--help"), tArgument);
}
// Parameter packing
// Call add_argument with variadic number of string arguments
template<typename... Targs>
Argument& add_argument(Targs... Fargs) {
std::shared_ptr<Argument> tArgument = std::make_shared<Argument>(std::move(Fargs)...);
if (!tArgument->mIsOptional)
mPositionalArguments.push_back(tArgument);
else
mOptionalArguments.push_back(tArgument);
for (auto& mName : tArgument->mNames) {
upsert(mArgumentMap, mName, tArgument);
}
return *tArgument;
}
// Base case for add_parents parameter packing
void add_parents() {
for (const auto& tParentParser : mParentParsers) {
auto tPositionalArguments = tParentParser.mPositionalArguments;
for (auto& tArgument : tPositionalArguments) {
mPositionalArguments.push_back(tArgument);
}
auto tOptionalArguments = tParentParser.mOptionalArguments;
for (auto& tArgument : tOptionalArguments) {
mOptionalArguments.push_back(tArgument);
}
auto tArgumentMap = tParentParser.mArgumentMap;
for (auto&[tKey, tValue] : tArgumentMap) {
upsert(mArgumentMap, tKey, tValue);
}
}
}
// Parameter packed add_parents method
// Accepts a variadic number of ArgumentParser objects
template<typename T, typename... Targs>
void add_parents(T aArgumentParser, Targs... Fargs) {
mParentParsers.push_back(aArgumentParser);
add_parents(Fargs...);
}
// Call parse_args_internal - which does all the work
// Then, validate the parsed arguments
// This variant is used mainly for testing
void parse_args(const std::vector<std::string>& aArguments) {
parse_args_internal(aArguments);
parse_args_validate();
}
// Main entry point for parsing command-line arguments using this ArgumentParser
void parse_args(int argc, char * argv[]) {
parse_args_internal(argc, argv);
parse_args_validate();
}
// Getter enabled for all template types other than std::vector and std::list
template <typename T = std::string>
typename std::enable_if<is_specialization<T, std::vector>::value == false &&
is_specialization<T, std::list>::value == false, T>::type
get(const char * aArgumentName) {
auto tIterator = mArgumentMap.find(aArgumentName);
if (tIterator != mArgumentMap.end()) {
return tIterator->second->get<T>();
}
return T();
}
// Getter enabled for std::vector
template <typename T>
typename std::enable_if<is_specialization<T, std::vector>::value, T>::type
get(const char * aArgumentName) {
auto tIterator = mArgumentMap.find(aArgumentName);
if (tIterator != mArgumentMap.end()) {
return tIterator->second->get_vector<T>();
}
return T();
}
// Getter enabled for std::list
template <typename T>
typename std::enable_if<is_specialization<T, std::list>::value, T>::type
get(const char * aArgumentName) {
auto tIterator = mArgumentMap.find(aArgumentName);
if (tIterator != mArgumentMap.end()) {
return tIterator->second->get_list<T>();
}
return T();
}
// Indexing operator. Return a reference to an Argument object
// Used in conjuction with Argument.operator== e.g., parser["foo"] == true
Argument& operator[](const std::string& aArgumentName) {
auto tIterator = mArgumentMap.find(aArgumentName);
if (tIterator != mArgumentMap.end()) {
return *(tIterator->second);
}
else {
throw std::runtime_error("Argument " + aArgumentName + " not found");
}
}
// Printing the one and only help message
// I've stuck with a simple message format, nothing fancy.
// TODO: support user-defined help and usage messages for the ArgumentParser
std::string print_help() {
std::stringstream stream;
stream << "Usage: " << mProgramName << " [options]";
size_t tLongestArgumentLength = get_length_of_longest_argument();
for (size_t i = 0; i < mPositionalArguments.size(); i++) {
auto tNames = mPositionalArguments[i]->mNames;
stream << (i == 0 ? " " : "") << tNames[0] << " ";
}
stream << "\n\n";
if (!mPositionalArguments.empty())
stream << "Positional arguments:\n";
for (const auto& mPositionalArgument : mPositionalArguments) {
size_t tCurrentLength = 0;
auto tNames = mPositionalArgument->mNames;
for (size_t j = 0; j < tNames.size() - 1; j++) {
auto tCurrentName = tNames[j];
stream << tCurrentName;
stream << ", ";
tCurrentLength += tCurrentName.length() + 2;
}
stream << tNames[tNames.size() - 1];
tCurrentLength += tNames[tNames.size() - 1].length();
if (tCurrentLength < tLongestArgumentLength)
stream << std::string((tLongestArgumentLength - tCurrentLength) + 2, ' ');
else if (tCurrentLength == tLongestArgumentLength)
stream << std::string(2, ' ');
else
stream << std::string((tCurrentLength - tLongestArgumentLength) + 2, ' ');
stream << mPositionalArgument->mHelp << "\n";
}
if (!mOptionalArguments.empty() && !mPositionalArguments.empty())
stream << "\nOptional arguments:\n";
else if (!mOptionalArguments.empty())
stream << "Optional arguments:\n";
for (const auto & mOptionalArgument : mOptionalArguments) {
size_t tCurrentLength = 0;
auto tNames = mOptionalArgument->mNames;
std::sort(tNames.begin(), tNames.end(),
[](const std::string& lhs, const std::string& rhs) {
return lhs.size() == rhs.size() ? lhs < rhs : lhs.size() < rhs.size();
});
for (size_t j = 0; j < tNames.size() - 1; j++) {
auto tCurrentName = tNames[j];
stream << tCurrentName;
stream << ", ";
tCurrentLength += tCurrentName.length() + 2;
}
stream << tNames[tNames.size() - 1];
tCurrentLength += tNames[tNames.size() - 1].length();
if (tCurrentLength < tLongestArgumentLength)
stream << std::string((tLongestArgumentLength - tCurrentLength) + 2, ' ');
else if (tCurrentLength == tLongestArgumentLength)
stream << std::string(2, ' ');
else
stream << std::string((tCurrentLength - tLongestArgumentLength) + 2, ' ');
stream << mOptionalArgument->mHelp << "\n";
}
std::cout << stream.str();
return stream.str();
}
private:
// If the argument was defined by the user and can be found in mArgumentMap, then it's valid
bool is_valid_argument(const std::string& aName) {
auto tIterator = mArgumentMap.find(aName);
return (tIterator != mArgumentMap.end());
}
void parse_args_internal(const std::vector<std::string>& aArguments) {
std::vector<char*> argv;
for (const auto& arg : aArguments)
argv.push_back(const_cast<char*>(arg.data()));
argv.push_back(nullptr);
return parse_args_internal(int(argv.size()) - 1, argv.data());
}
void parse_args_internal(int argc, char * argv[]) {
if (mProgramName.empty() && argc > 0)
mProgramName = argv[0];
for (int i = 1; i < argc; i++) {
auto tCurrentArgument = std::string(argv[i]);
if (tCurrentArgument == "-h" || tCurrentArgument == "--help") {
print_help();
exit(0);
}
auto tIterator = mArgumentMap.find(argv[i]);
if (tIterator != mArgumentMap.end()) {
// Start parsing optional argument
auto tArgument = tIterator->second;
tArgument->mUsedName = tCurrentArgument;
tArgument->mIsUsed = true;
auto tCount = tArgument->mNumArgs;
// Check to see if implicit value should be used
// Two cases to handle here:
// (1) User has explicitly programmed nargs to be 0
// (2) User has provided an implicit value, which also sets nargs to 0
if (tCount == 0) {
// Use implicit value for this optional argument
tArgument->mValues.push_back(tArgument->mImplicitValue);
tArgument->mRawValues.push_back("");
tCount = 0;
}
while (tCount > 0) {
i = i + 1;
if (i < argc) {
tArgument->mUsedName = tCurrentArgument;
tArgument->mRawValues.push_back(argv[i]);
if (tArgument->mAction != nullptr)
tArgument->mValues.push_back(tArgument->mAction(argv[i]));
else {
if (tArgument->mDefaultValue.has_value())
tArgument->mValues.push_back(tArgument->mDefaultValue);
else
tArgument->mValues.push_back(std::string(argv[i]));
}
}
tCount -= 1;
}
}
else {
if (Argument::is_optional(argv[i])) {
// This is possibly a compound optional argument
// Example: We have three optional arguments -a, -u and -x
// The user provides ./main -aux ...
// Here -aux is a compound optional argument
std::string tCompoundArgument = std::string(argv[i]);
if (tCompoundArgument.size() > 1 && tCompoundArgument[0] == '-' && tCompoundArgument[1] != '-') {
for (size_t j = 1; j < tCompoundArgument.size(); j++) {
std::string tArgument(1, tCompoundArgument[j]);
size_t tNumArgs = 0;
tIterator = mArgumentMap.find("-" + tArgument);
if (tIterator != mArgumentMap.end()) {
auto tArgumentObject = tIterator->second;
tNumArgs = tArgumentObject->mNumArgs;
std::vector<std::string> tArgumentsForRecursiveParsing = { "", "-" + tArgument };
while (tNumArgs > 0 && i < argc) {
i += 1;
if (i < argc) {
tArgumentsForRecursiveParsing.push_back(argv[i]);
tNumArgs -= 1;
}
}
parse_args_internal(tArgumentsForRecursiveParsing);
}
else {
if (!tArgument.empty() && tArgument[0] == '-')
std::cout << "warning: unrecognized optional argument " << tArgument
<< std::endl;
else
std::cout << "warning: unrecognized optional argument -" << tArgument
<< std::endl;
}
}
}
else {
std::cout << "warning: unrecognized optional argument " << tCompoundArgument << std::endl;
}
}
else {
// This is a positional argument.
// Parse and save into mPositionalArguments vector
if (mNextPositionalArgument >= mPositionalArguments.size()) {
std::cout << "error: unexpected positional argument " << argv[i] << std::endl;
print_help();
exit(0);
}
auto tArgument = mPositionalArguments[mNextPositionalArgument];
auto tCount = tArgument->mNumArgs - tArgument->mRawValues.size();
while (tCount > 0) {
tIterator = mArgumentMap.find(argv[i]);
if (tIterator != mArgumentMap.end() || Argument::is_optional(argv[i])) {
i = i - 1;
break;
}
if (i < argc) {
tArgument->mUsedName = tCurrentArgument;
tArgument->mRawValues.push_back(argv[i]);
if (tArgument->mAction != nullptr)
tArgument->mValues.push_back(tArgument->mAction(argv[i]));
else {
if (tArgument->mDefaultValue.has_value())
tArgument->mValues.push_back(tArgument->mDefaultValue);
else
tArgument->mValues.push_back(std::string(argv[i]));
}
}
tCount -= 1;
if (tCount > 0) i += 1;
}
if (tCount == 0)
mNextPositionalArgument += 1;
}
}
}
}
void parse_args_validate() {
// Check if all positional arguments are parsed
for (const auto& tArgument : mPositionalArguments) {
if (tArgument->mValues.size() != tArgument->mNumArgs) {
std::cout << "error: " << tArgument->mUsedName << ": expected "
<< tArgument->mNumArgs << (tArgument->mNumArgs == 1 ? " argument. " : " arguments. ")
<< tArgument->mValues.size() << " provided.\n" << std::endl;
print_help();
exit(0);
}
}
// Check if all user-provided optional argument values are parsed correctly
for (const auto& tArgument : mOptionalArguments) {
if (tArgument->mIsUsed && tArgument->mNumArgs > 0) {
if (tArgument->mValues.size() != tArgument->mNumArgs) {
// All cool if there's a default value to return
// If no default value, then there's a problem
if (!tArgument->mDefaultValue.has_value()) {
std::cout << "error: " << tArgument->mUsedName << ": expected "
<< tArgument->mNumArgs << (tArgument->mNumArgs == 1 ? " argument. " : " arguments. ")
<< tArgument->mValues.size() << " provided.\n" << std::endl;
print_help();
exit(0);
}
}
}
else {
// TODO: check if an implicit value was programmed for this argument
}
}
}
// Used by print_help.
size_t get_length_of_longest_argument() {
size_t tResult = 0;
for (const auto& mPositionalArgument : mPositionalArguments) {
size_t tCurrentArgumentLength = 0;
auto tNames = mPositionalArgument->mNames;
for (size_t j = 0; j < tNames.size() - 1; j++) {
auto tNameLength = tNames[j].length();
tCurrentArgumentLength += tNameLength + 2; // +2 for ", "
}
tCurrentArgumentLength += tNames[tNames.size() - 1].length();
if (tCurrentArgumentLength > tResult)
tResult = tCurrentArgumentLength;
}
for (const auto& mOptionalArgument : mOptionalArguments) {
size_t tCurrentArgumentLength = 0;
auto tNames = mOptionalArgument->mNames;
for (size_t j = 0; j < tNames.size() - 1; j++) {
auto tNameLength = tNames[j].length();
tCurrentArgumentLength += tNameLength + 2; // +2 for ", "
}
tCurrentArgumentLength += tNames[tNames.size() - 1].length();
if (tCurrentArgumentLength > tResult)
tResult = tCurrentArgumentLength;
}
return tResult;
}
std::string mProgramName;
std::vector<ArgumentParser> mParentParsers;
std::vector<std::shared_ptr<Argument>> mPositionalArguments;
std::vector<std::shared_ptr<Argument>> mOptionalArguments;
size_t mNextPositionalArgument;
std::map<std::string, std::shared_ptr<Argument>> mArgumentMap;
};
}